3.4 Multiplying Decimals

Objective: To multiply decimals

To Multiply Decimals

Step 1: Put the values in a vertical column. (Do not line up the decimals)

Step 2: Multiply as usual
Step 3: Count the total number of digits to the right of the decimals point

Step 4: Replace the decimal point in the answer

Examples

1) $6.04 \cdot 1.6$

Examples

1) $6.04 \cdot 1.6$
2) $2.47 \cdot 0.02$

$\begin{array}{r}+6040 \\ \hline 9.664\end{array}$

$\begin{array}{r}2.47 \\ 0.02 \\ \hline 494 \\ \hline 0.00\end{array}$
$\begin{array}{r}+\quad 000 \\ \hline 0.0494\end{array}$

3 decimal places

Practice

3) $4.24 \cdot 3.76$ 15.9424
 4) $13.01 \cdot 8.1$
 105.381

5) $7.4 \cdot 0.037$
6) $5 \cdot 2.9$
0.2738
14.5

Find the Area of the Figure

Find the area of each shape and add them together.

$$
\begin{array}{cc}
\frac{\text { Purple }}{\text { in } \cdot 5.6 \mathrm{in} .} & \frac{\text { Blue }}{21.84 \mathrm{in}^{2}}
\end{array} \quad 4 \mathrm{in}^{-1 \mathrm{in}}
$$

$$
\begin{aligned}
& 21.84 \mathrm{in}^{2}+4 \mathrm{in}^{2} \\
& 25.84 \mathrm{in}^{2}
\end{aligned}
$$

Distance Formula

Step 1: List the information you know
Step 2: Identify what you want to know
Step 3: Plug in the information into the formula

Examples

1) rate $=5.2 \mathrm{ft} / \mathrm{sec}$. time $=8.62 \mathrm{sec}$. distance $=$?

$$
\begin{aligned}
d & =r \quad t \\
d & =5.2 \cdot 8.62 \\
& 5.2
\end{aligned}
$$

$$
\begin{array}{r}
\times 8.62 \\
\hline 104
\end{array}
$$

$$
3120
$$

$$
+\frac{41600}{44.824} \mathrm{ft} .
$$

2) rate $=4.5 \mathrm{yards} / \mathrm{sec}$. time $=25.25 \mathrm{sec}$. distance $=$?

$$
\begin{aligned}
& d=r \quad t \\
& d=4.5 \cdot 25.25 \\
& 4.5
\end{aligned}
$$

$$
\begin{array}{r}
\times 25.25 \\
\hline
\end{array}
$$

$$
225
$$

900
22500

+ 90000
113.625 yards

Practice

You are traveling to Magic Mountain (from school) at an average speed of 40 miles/hour. It takes 1.25 hours to get there. What is the distance from Downey to Magic Mountain?

$$
\begin{aligned}
& \text { rate }=40 \mathrm{mph} . \\
& \text { time }=1.25 \text { hours } \\
& \text { distance }=\text { ? } \\
& \mathbf{d}=\mathbf{r} \quad \mathbf{t} \\
& \mathbf{d}=40 \cdot 1.25
\end{aligned}
$$

$$
\begin{array}{r}
40 \\
\times 1.25 \\
\hline 200 \\
800 \\
4000 \\
\hline 50.00 \text { miles }
\end{array}
$$

